

Idealized hydrogen positions were calculated and tied to the associated non-hydrogen positions through a riding model for the remainder of the refinement. Final refinement of 20 non-hydrogen atoms using anisotropic thermal parameters and 17 hydrogen atoms using isotropic thermal parameters gave residual values of $R_1 = 0.049$ and $R_2 =$ 0.067 where $\mathbf{R}_1 = \sum ||F_o| - |F_c|| / \sum |F_o|$ and $R_2 = [\sum \omega (|F_o| - |F_c|)^2 / \sum \omega |F_o|^2]^{1/2}$.

A perspective view of the molecular structure is shown in Figure 1 (supplementary material). The heterocyclic six-membered ring exists in a chair conformation with the substituent at C(1) being axial. The plane containing S(1), S(2), C(2), and C(4) bisects that passing through C(2), C(3), and C(4) at 58.1° and the S(1), C(1), S(2) plane at 54.1°. The two latter planes are almost parallel, forming an angle of 4.1°. The oxygen atom is centered above the heterocyclic ring and the two phenyl ring planes bisect at 85.8°. Bond distances and bond angles (supplementary material) within the molecule are consistent with those expected from the molecular geometry.

In an attempt to quantitate this conformational effect, the anancomeric derivatives 3 and 4 (Scheme III) were prepared,¹¹ and their proton NMR spectra were compared with that for 2. Most interestingly, the coupling constant of H_2 to phosphorus in 2, 3, and 4 varies considerably: 6, 15, and 4.2 Hz, respectively. On the assumption that ${}^{2}J_{\mathrm{H}(2)/\mathrm{P}}$ in the mobile dithiane (2) is the weighed average of those for the model diastereomers 3 and $\overline{4}$,¹² then K = $(J_{ax} - J)/(J - J_{eq}) = 5.0$, which affords $\Delta G^{\circ} \simeq 1.0$ kcal/ mol, for the free energy difference favoring 2-ax over 2-eq.

Most commonly, the anomeric effect has been rationalized in terms of stabilization by (1) dipole-dipole interaction¹³ and (2) delocalization of the lone pair on the endocyclic heteroatom into the antiperiplanar (axial) adjacent polar bond¹⁵ (Scheme II). So far, we have not found supporting evidence for either mechanism.¹⁶ On the one hand, if dipole-dipole interactions were operative here, it would be expected that the contribution of 2-eq should increase with increasing dielectric constant of the medium.¹⁸ However, little change was observed for the proton NMR spectra of 2 [e.g., fairly similar $\Delta \delta_{ax/eq}(H_{4,6})$] in solvents of different polarity¹⁹ (Table I).

Table I. Solvent Effect on the Chemical Shift Difference $(\Delta \delta_{ax/eq})$ for the C(4,6) Methylene Protons

solvent	ea	Δδ, ppm	
CDCl ₃	4.7	1.19	
$CD_{3}CO_{2}D^{b}$	6.2	1.05	
CD,COCD,b	20.7	1.36	
CD OD ^b	32.6	0.94	
DMF-d,	36.7	1.22	
CD ₃ CN	37,5	1.04	

^a Dielectric constant for protiated solvents. ^b Due to low solubility in this solvent, the measurement was performed by pulse FT NMR at 100.1 MHz, using a (PD, 180°, τ , 90°, AT)_n sequence to eliminate the solvent signal.

On the other hand, n_S/σ^*_{C-P} interaction (Scheme II) in 2-ax should result in a shorter than normal sulfur-anomeric carbon bond and a longer than normal axial carbonphosphorus bond.¹⁵ This is not the case, though. Both the sulfur-anomeric carbon $(1.809 \pm 0.012 \text{ Å})$ and the carbon-phosphorus $(1.825 \pm 0.003 \text{ Å})$ bond distances appear normal.

Registry No. 1, 505-23-7; 2, 83476-36-2; 3, 83463-92-7; 4, 83509-98-2; ClP(C₆H₅)₂, 1079-66-9.

Supplementary Material Available: Listings of atomic coordinates, anisotropic thermal parameters for all non-hydrogen atoms, isotropic thermal parameters for hydrogen atoms, observed and calculated structure factors, bond distances and bond angles, and an ORTEP drawing (15 pages). Ordering information is given on any current masthead page.

(20) We thank one of the reviewers for this suggestion.

Eusebio Juaristi,* Lucia Valle, Coralia Mora-Uzeta Bertha A. Valenzuela, Pedro Joseph-Nathan*

Departamento de Quimica Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Apartado Postal 14-740 07000-México, D.F., Mexico

Michael F. Fredrich

Nicolet XRD Corp. Fremont, California 94539 Received September 15, 1982

Deuterium Isotope Effects and the Mechanism of Kinetic Enclate Formation¹

Summary: The reaction of lithium diisopropylamide with 2-methyl-3-pentanone in tetrahydrofuran at 0 °C occurs with a deuterium isotope effect of 5.1 at the 2-position but only of 0.9 at the 4-position, suggesting a mechanism of at least two steps in which the proton transfer need not always be the slow step.

Sir: We present evidence that the mechanism of kinetic enolate formation involves at least two steps and that the proton-transfer step is not always rate determining. By "kinetic enolate" we mean the product of irreversible attack

⁽¹¹⁾ Full details with be published separately. (12) Also, it has to be assumed that the methyl substituents at C(4,6)have a negligible effect on the value of the coupling constant between the nuclei at $\overline{C(2)}$

⁽¹³⁾ Edward, J. T. Chem. Ind. (London) 1955, 1102-1104. See also ref 14.

⁽¹⁴⁾ Jeffrey, G. A.; Pople, J. A.; Radom, L. Carbohydr. Res. 1972, 25, 117-131

⁽¹⁵⁾ Romers, C.; Altona, C.; Buys, H. R.; Havinga, E. Topics Stereo-chem. 1969, 4, 39-97. See also ref 14.

⁽¹⁶⁾ The mechanism responsible for this conformational effect should be worth ca. 2.25 kcal/mol; i.e., the sum of the axial preference of the phosphinoyl group (ca. 1.0 kcal/mol, see text) and the value of the steric repulsion present in the axial orientation ($E_v = 1.25$ kcal/mol; estimated from the structural data, by means of the Hill equation¹⁷). (17) Hill, T. L. J. Chem. Phys. 1948, 16, 399-404.

⁽¹⁸⁾ See, for example: Eliel, E. L.; Giza, C. A. J. Org. Chem. 1968, 33, 3754-3758.

⁽¹⁹⁾ The possibility exists that alternative C(2)-P rotamers, which in relation to the dominant conformer are on steric and/or dipolar grounds slightly more destabilized and which may become only modestly populated over the polarity range studied, are responsible for the small variations observed in Table 1.20

⁽¹⁾ This work was supported by the National Science Foundation.

Table I. Arrhenius Parameters for the Temperature Dependence of the Isotope Effect from 0 to -50 °C for the Deprotonation of 2-Methyl-3-pentanone with Lithium Diisopropylamide in Tetrahydrofuran

	product				
parameter	2	(E)-3 + (Z)-3	(E)- 3	(Z)-3	
$ \begin{array}{c} \mathbf{A}_{\mathbf{H}}/\mathbf{A}_{\mathbf{D}} \\ E_{\mathbf{D}} - E_{\mathbf{H}}, \text{ kcal mol}^{-1} \\ \mathbf{k}_{\mathbf{H}}/\mathbf{k}_{\mathbf{D}}, 0 \ ^{\circ}\mathbf{C} \end{array} $	$\begin{array}{c} 0.399 \pm 0.184 \\ 1.38 \pm 0.22 \\ 5.06 \pm 0.81 \end{array}$	$\begin{array}{c} 0.876 \pm 0.282 \\ 0.024 \pm 0.157 \\ 0.92 \pm 0.12 \end{array}$	$\begin{array}{c} 1.089 \pm 0.386 \\ -0.019 \pm 0.173 \\ 1.05 \pm 0.13 \end{array}$	$\begin{array}{c} 0.742 \pm 0.358 \\ -0.173 \pm 0.235 \\ 0.78 \pm 0.13 \end{array}$	
Scheme I			Scheme II		

by a very strong base on a ketone, which usually gives the less stable regioisomer.³⁻⁵

The ketones 1a-c were prepared by standard methods CIT I CXC(O)CY2CH3

$$(H_3)_2(XC(0)CY_2CF)$$

 $1a, X = Y = H$
 $1b, X = D; Y = H$
 $1c, X = H; Y = D$

and added to at least a threefold excess of lithium diisopropylamide (LDA) in tetrahydrofuran (THF) over a temperature range of 0 to -50 °C. The resulting solution (ca. 0.04 M in enolate) was treated with trimethylsilyl chloride, and the mixture of trimethylsilyl ethers (2 and 3) was analyzed by gas chromatography. The product

$$(CH_3)_2C \xrightarrow{OS:Me_3} (CH_3)_2C \xrightarrow{OS:Me_3} (CH_3)$$

compositions did not change over a 24-h period at room temperature when the reaction mixture was protected from moisture, and yields, determined by use of an internal standard, were 92-96%. The deuterated ketones 1b and 1c contained no protium in the labeled positions (NMR), and the trimethylsilyl ethers 2 and 3 from 1b and 1c were shown (NMR) to have suffered no exchange of deuterium.

The ratios of [(E)-3 + (Z)-3]/2, (E)-3/2, and (Z)-3/2were fitted to the Arrhenius equation. The resulting parameters were used to calculate the Arrhenius parameters of the isotope effects, assuming that deprotonation at the undeuterated α positions of 1b and 1c occurs at the same rate as at the corresponding positions of 1a, an assumption probably good to within a few percent.

The most striking aspect of the results (Table I) is the large difference in $k_{\rm H}/k_{\rm D}$ for the formation of 2 and 3: for the former, $k_{\rm H}/k_{\rm D}$ has a normal value for a rate-determining proton transfer, while for 3 (and for (E)-3 and (Z)-3 treated separately) $k_{\rm H}/k_{\rm D}$ is near unity or perhaps slightly inverse. We consider it quite unreasonable to suppose that a single methyl group on the α -carbon could make so much difference in $k_{\rm H}/k_{\rm D}$ for a simple rate-determining proton transfer. Consequently, we are compelled to assume that proton removal is preceded or followed by one or more other steps that can be partially or wholly rate determining.

An immediately obvious formulation is an internal return mechanism such as that in Scheme I. If $k^{T}_{2} \gg k^{T}_{-1}$ or k_{-1D}^{T} , then the observed isotope effect is simply k_{1}^{T} k^{T}_{1D} , a normal primary isotope effect. If, on the other hand, $k^{S}_{2} \ll k^{S}_{-1}$ or k^{S}_{-1D} , the observed isotope effect is $k^{S}_{1}k^{S}_{-1D}/k^{S}_{1D}k^{S}_{-1}$, which is the equilibrium isotope effect for the proton-transfer step, expected to be within about 20% of unity. The mechanism has, however, a serious flaw: the highly exothermic proton transfer (the estimated pK_{a} for a secondary amine is ≥ 44 ,⁶ and the measured pK_a for diethyl ketone = 27⁷) means that ΔG^* for the k_{-1} steps must be at least 20 kcal mol⁻¹, far larger than is reasonable for the diffusion steps (k_2) that the k_{-1} steps compete with.

Another mechanism consistent with the facts is shown in Scheme II. Although formally of the same type as the mechanism in Scheme I, the first step now is complex formation, and the second is the actual proton transfer. If $k^{T}_{-1} \gg k^{T}_{2}$ or k^{T}_{2D} , the observed isotope effect is k^{T}_{2}/k^{T}_{2D} , while if $k^{S}_{-1} \ll k^{S}_{2}$ or k^{S}_{2D} , the observed isotope effect is k^{S}_{1}/k^{S}_{1D} , which should be close to unity. Such a relationship of the rate constants is plausible, since $k_{-1}^T > k_{-1}^S$ is expected for steric reasons and $k_2^S > k_2^T$ for both steric and electronic reasons.

To estimate ΔG^* for the k_2 step of Scheme II, we utilize Marcus theory.⁸ Data on the nearly thermoneutral proton transfer from 9-methylfluorene to fluorenyllithium⁹ suggests that ΔG^*_0 (the intrinsic barrier⁸) for carbon-to-carbon proton transfers may be just below 80% of ΔG° for ionization⁷ in polar aprotic media. This gives $\Delta G^*_0 \approx 29$ kcal mol⁻¹ for the identity reaction diethyl ketone enolate + diethyl ketone. The other relevant identity reaction, R_2N^- + R_2NH , must be close to diffusion controlled,^{10,11} giving $\Delta G^*_0 \approx 3 \text{ kcal mol}^{-1}$. Following Marcus,⁸ we take ΔG^*_0 for $R_2N^- + RCOCH_2CH_3$ as the mean of those for the two identity reactions, or 16 kcal mol⁻¹. From the Marcus equation

$$\Delta G^* = \Delta G^*_0 (1 + \Delta G^\circ / 4 \Delta G^*_0)^2$$

and the known (from pK_a values^{6,7}) ΔG° of -23 kcal mol⁻¹, $\Delta G^* \approx 6.6$ kcal mol⁻¹. It is not unreasonable to suppose

 (10) Eigen, M. Angew. Chem., Int. Ed. Engl. 1964, 3, 1–19.
 (11) Bell, R. P. "The Proton in Chemistry", 2nd ed.; Cornell University Press: Ithaca, NY, 1973; pp 123-130.

 ⁽²⁾ Sherman Clarke Fellow, 1977–1979; Hooker Fellow, 1978–1979.
 (3) House, H. O.; Czuba, L. J.; Gall, M.; Olmstead, H. D. J. Org. Chem.

^{1969, 34, 2324-2336.} (4) House, H. O. "Modern Synthetic Reactions", 2nd ed.; W. A. Benjamin: New York, 1972; Chapter 9.

⁽⁵⁾ d'Angelo, J. Tetrahedron 1976, 32, 2979-2990.

⁽⁶⁾ Bordwell, F. G.; Drucker, G. E.; Fried, H. E. J. Org. Chem. 1981, 46, 632-635.

 ⁽⁷⁾ Matthews, W. S.; Bares, J. E.; Bartmess, J. E.; Bordwell, F. G.; Cornforth, F. J.; Drucker, G. E.; Margolin, Z.; McCollum, R. J.; Vanier, N. R. J. Am. Chem. Soc. 1975, 97, 7006-7014.

Marcus, R. A. J. Chem. Phys. 1968, 72, 891–899.
 Murdoch, J. R.; Bryson, J. A.; McMillen, D. F.; Brauman, J. I. J. Am. Chem. Soc. 1982, 104, 600-610.

that the k_{-1} steps could be slower than this (k_2) step. Murdoch estimates the rate constant for separation of molecules in solution as $\leq 10^{12} \text{ s}^{-1}$ and suggests that values of 10^{8} – 10^{10} may not be uncommon, with even slower rates $(10^{5}-10^{8})$ for hydrogen-bonded complexes.¹² The figure 10^8 s^{-1} corresponds to $\Delta G^* \approx 6.6$ kcal mol⁻¹, comparable to ΔG^* for the k_2 step.

Another question is whether discrete complexes such as 4 and 5 are credible species. Direct evidence is lacking. Chemical shifts of ketones in the presence of europium shift reagents have been explained by analogous complexes,¹³ but a more sophisticated NMR analysis favors a linear complex (>C=O...M) for symmetrical ketones and a single, only slightly nonlinear one for unsymmetrical ketones.¹⁴ In the absence of experimental information on species more directly related to 4 and 5, however, we continue to regard Scheme II, or some mechanism with analogous intermediates, as a viable explanation of our results.

We are now testing the mechanism of Scheme II and exploring its implications.

 (13) Pickering, R. A.; Roling, P. V. J. Magn. Reson. 1976, 22, 385–387.
 (14) Raber, D. J.; Janks, C. M.; Johnson, M. D., Jr.; Raber, N. K. J. Am. Chem. Soc. 1980, 102, 6591-6594.

David J. Miller,² William H. Saunders, Jr.*

Department of Chemistry University of Rochester Rochester, New York 14627 Received July 20, 1982

Shikimate-Derived Metabolites. 12.¹ Stereocontrolled Total Synthesis of Shikimic Acid and 6β -Deuterioshikimate

Summary: A short total synthesis of shikimic acid and related derivatives is described in which an unusual, stereoselective Bu₃SnD debromination conveniently furnishes 6β -deuterioshikimate for biosynthetic studies.

Sir: Shikimic acid (1a) figures prominently in microbial and plant metabolism as a key intermediate in the biosynthesis of aromatic amino acids, isoprenoid quinones, bacterial growth promoters, and other vital compounds.² Commensurate with its biochemical significance, 1a has

become a popular target for total synthesis, and many successful approaches have been described.^{2a,3} We now report a new shikimic acid synthesis that permits selective operations at C-3 and thus access to other metabolites of the main biosynthetic pathway.⁴ Moreover, a remarkable, stannane-mediated bromide reduction occurring with a high degree of stereocontrol has led to the synthesis of 6β -deuterioshikimic acid (1b).

The synthesis of shikimic acid was achieved as follows. Alcohol 3, readily available by acid hydrolysis of the known allylic acetate 2,⁵ was stereoselectively epoxidized using

CF₃CO₃H (ClCH₂CH₂Cl, reflux, 23 h, 84%) to furnish β -oxide 8 (mp 137-140 °C) as the only product.⁶ This bicyclic lactone underwent smooth debromination (Bu₃SnH, AIBN, toluene, reflux, 2 h, 72%) to give the corresponding reduced epoxyol 9 (mp 123-125 °C).⁷ Upon saponification with KOH (1.25 equiv, 4:1 CH_3OH/H_2O , 24 h), 9 was transformed into dl-shikimic acid (1a: 90%; mp and lit.^{2a} mp 191-192 °C). This seven-step synthesis of 1a in 13% overall yield from 1,4-dihydrobenzoic acid demonstrated that both shikimate as well as chorismate¹ ring systems could be fashioned from the same bicyclic framework.

In related experiments, allylic acetate 2 was likewise reduced with Bu₃SnH (toluene, reflux, 3 h) to afford 4 in 82% yield.⁸ Lactone 4 could then be opened either in base $(NaOCH_3-CH_3OH)$ or in acid (concentrated HCl-CH_3OH) to afford methyl 3-deoxyshikimate [90%; mp 94-95 °C (lit.⁹ mp 97 °C)] or its unconjugated isomer 7¹⁰ (100% yield, colorless oil), respectively.

According to the generally accepted radical mechanism of Bu₃SnH reductions, most dehalogenations occur with stereochemical randomization.¹¹ Exceptions include bridgehead bromides¹² and certain gem-fluorohalocyclopropanes which afford fluorocarbons, both with retention of configuration.¹³ Net inversion has also been observed in the Ph₃SnH reduction of two chiral cyclopropyl bromides.¹⁴ These conflicting reports notwithstanding, the

(1) + 1, M + 3, 100). (7) 9: ¹H NMR (CDCl₃, 300 MHz) δ 4.47 (m, 1 H, H_B), 4.04 (br s, 1 H, H_C), 3.65 (dd, 1 H, J = 4.0, 4.3 Hz, H_E), 3.52 (m, 1 H, H_D), 3.04 (dd, 1 H, J = 4.6, 4.3 Hz, H_F), 2.38 (d, 1 H, 12.5 Hz, H_A), 2.06 (m, 1 H, H_A); IR (CHCl₃) 3425, 1805, 1785 cm⁻¹; CIMS, m/e (relative intensity) 157 (M

In (ChCl3) 323, 1603, 1783 cm², ChAi3, m/e (relative intensity) 157 (M + 1, 5). (8) 4: ¹H NMR (CDCl₃, 300 MHz) δ 6.33 (dd, 1 H, J = 7.4, 9.4 Hz, H_E), 5.78 (ddd, 1 H, J = 1.6, 3.1, 9.4 Hz, H_D), 5.23 (dd, 1 H, J = 3.0, 3.1 Hz, H_C), 4.72 (m, 1 H, H_B), 3.02 (dd, 1 H, J = 3.4, 7.4 Hz, H_F), 2.34 (m, 1 H, H_A), 2.12 (d, 1 H, 11.6 Hz, H_A), 2.08 (s, 3 H, acetate); IR (CHCl₃) 1785, 1733 cm⁻¹; CIMS, m/e (relative intensity) 183 (M + 1, 100).

(9) R. Grewe and I. Hinrichs, Chem. Ber., 97, 443 (1964).

(10) Partial methanolysis of 4 in acid was also possible and gave the C-4 monoacetate of 7 in high yield.

(11) H. Kuivila, Synthesis, 499 (1970).

(12) T.-Y. Luh and L. M. Stock, J. Org. Chem., 42, 2790 (1977).

(13) (a) T. Ando, F. Namigata, H. Yamanaka, and W. Funasaka, J. Am. Chem. Soc., 89, 5719 (1967), and references cited therein; (b) T. Ando, T. Ishihara, E. Ohtani, and H. Sausaka, J. Org. Chem., 46, 4446 (1981).

⁽¹²⁾ Murdoch, J. R. J. Am. Chem. Soc. 1980, 102, 71-78

⁽¹⁾ For part 11, see: B. Ganem, N. Ikota, V. B. Muralidharan, W. S.
Wade, S. D. Young, and Y. Yukimoto, J. Am. Chem. Soc., in press.
(2) For recent reviews see: (a) B. Ganem, Tetrahedron, 34, 3353
(1978); (b) U. Weiss and J. M. Edwards, "The Biosynthesis of Aromatic Compounds", Wiley, New York, 1980; (c) E. Haslam, "The Shikimate Pathway", Halstead Press, New York, 1974.
(3) M. Korzeda, M. A. Ciucolini, J. Am. Chem. Soc. 104, 2202 (1922)

⁽³⁾ M. Koreeda, M. A. Ciufolini, J. Am. Chem. Soc. 104, 2308 (1982), and ref 15 therein.

⁽⁴⁾ B. Ganem and V. B. Muralidharan, "Abstracts of Papers", 9th Northeast Regional Meeting of the American Chemical Society, Oct 1979, Syracuse, NY, American Chemical Society, Washington, DC, 1979, **ORGN 44.**

⁽⁵⁾ N. Ikota and B. Ganem, J. Am. Chem. Soc. 100, 351 (1978).

^{(6) 8: &}lt;sup>1</sup>H NMR (CDCl₃, 300 MHz) δ 4.64 (br s, 2 H, H_A, H_B), 4.21 (m, 1 H, H_C), 3.67 (dd, 1 H, J = 5.0, 3.1 Hz; H_E), 3.42 (d, 1 H, J = 5.0 Hz; H_D); IR (KBr) 3330, 1795 cm⁻¹; CIMS, *m/e* (relative intensity) 235, 237 (M + 1, M + 3, 100).